

JAX-CT-9

Seat No.

M. Sc. (Sem. III) (CBCS) Examination

December - 2019

Physics: CT - 09

(Nuclear & Particle Physics)

Time : $2\frac{1}{2}$ Hours]

[Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. All questions carry equal marks.
- 1 Answer in brief any seven:

14

- 1. Define the term: Nucleon
- 2. Calculate the separation energy of $^{2^{\circ}7}$ Pb nuclide. [M(207 Pb) = 206.9759 u, M(206 Pb) = 205.9744 u and M_n =1.008665 u]
- 3. Write the three different β decay processes.
- 4. Write the essential assumptions of Liquid Drop Model.
- 5. Write the conditions for spontaneous emission of β^- and β^+ decay.
- 6. What are the different mechanisms that take place when γ radiations interact with matter?
- 7. Mention two main features of linear attenuation coefficient. What is its unit?
- 8. Define: Endothermic reaction and exothermic reaction.
- 9. Why particle physics is called high energy physics?
- 10. In which groups the elementary particles can be classified?
- 2 Answer the following questions: any two out of three 14
 - 1. List the various properties of nuclides. Discuss time independent nuclear properties in detail.
 - 2. Explain the abundance systematic of stable nuclides in detail.
 - 3. What is nuclear binding energy? Define it. Calculate the total and average binding energy of $^4\mathrm{He}$ nuclide. [M_H = 1.007825 u, M_n = 1.008665 u, M($^4\mathrm{He}$) = 4.002606 u].

	(a)	Discuss the various terms in semi empirical mass formula. Write the equation of a mass parabola.	
	(b)	Discuss the spin orbit coupling model in detail. Find the nuclear spin and parity for the $^{15}\rm{N},~^{15}\rm{O},~^{13}\rm{C}$ and $^{27}\rm{Si}$ nuclides.	
OR			
3	Answer the following questions: (all are compulsory)		14
	(a)	Discuss the Compton Effect in detail when γ radiation interacts with matter.	
	(b)	Discuss the interaction of charged particle with matter and derive an equation of Kinetic energy lost by the heavy particle per unit path.	
4	Answer the following questions: Any TWO out of THREE: 14		
	1.	A reaction between $\left(\pi^{-}\right)$ and (p) is given as π^{-} + p \rightarrow	
		$\mathbf{n} + \mathbf{\pi}^{\circ}$,	
		Given $M(\pi^- + p) = 1077.85$ MeV and $M(n + \pi^\circ) = 1074.53$ MeV. Show that the reaction falls under the category of strong interaction.	
	2.	By considering the nuclear reaction in a lab system, derive the Q equation of a nuclear reaction with its special case.	
	3.	With necessary examples, show that strangeness is conserved in strong and electromagnetic interaction but not in weak interaction.	
5	Write any two short notes: 14		
	1.	Neutrino hypothesis	
	2.	Conservation of baryon number	
	3.	Cross section for a nuclear reaction	

Answer the following questions : (all are compulsory)

14

3

4. Internal conversion.